Structural conservation of druggable hot spots in protein-protein interfaces.
نویسندگان
چکیده
Despite the growing number of examples of small-molecule inhibitors that disrupt protein-protein interactions (PPIs), the origin of druggability of such targets is poorly understood. To identify druggable sites in protein-protein interfaces we combine computational solvent mapping, which explores the protein surface using a variety of small "probe" molecules, with a conformer generator to account for side-chain flexibility. Applications to unliganded structures of 15 PPI target proteins show that the druggable sites comprise a cluster of binding hot spots, distinguishable from other regions of the protein due to their concave topology combined with a pattern of hydrophobic and polar functionality. This combination of properties confers on the hot spots a tendency to bind organic species possessing some polar groups decorating largely hydrophobic scaffolds. Thus, druggable sites at PPI are not simply sites that are complementary to particular organic functionality, but rather possess a general tendency to bind organic compounds with a variety of structures, including key side chains of the partner protein. Results also highlight the importance of conformational adaptivity at the binding site to allow the hot spots to expand to accommodate a ligand of drug-like dimensions. The critical components of this adaptivity are largely local, involving primarily low energy side-chain motions within 6 Å of a hot spot. The structural and physicochemical signature of druggable sites at PPI interfaces is sufficiently robust to be detectable from the structure of the unliganded protein, even when substantial conformational adaptation is required for optimal ligand binding.
منابع مشابه
Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces
MOTIVATION Protein assemblies are currently poorly represented in structural databases and their structural elucidation is a key goal in biology. Here we analyse clefts in protein surfaces, likely to correspond to binding 'hot-spots', and rank them according to sequence conservation and simple measures of physical properties including hydrophobicity, desolvation, electrostatic and van der Waals...
متن کاملProtein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces.
Polar residue hot spots have been observed at protein-protein binding sites. Here we show that hot spots occur predominantly at the interfaces of macromolecular complexes, distinguishing binding sites from the remainder of the surface. Consequently, hot spots can be used to define binding epitopes. We further show a correspondence between energy hot spots and structurally conserved residues. Th...
متن کاملProbing binding hot spots at protein-RNA recognition sites.
We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structur...
متن کاملIdentification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy
MOTIVATION Hot spots are residues comprising only a small fraction of interfaces yet accounting for the majority of the binding energy. These residues are critical in understanding the principles of protein interactions. Experimental studies like alanine scanning mutagenesis require significant effort; therefore, there is a need for computational methods to predict hot spots in protein interfac...
متن کاملHotSprint: database of computational hot spots in protein interfaces
We present a new database of computational hot spots in protein interfaces: HotSprint. Hot spots are residues comprising only a small fraction of interfaces yet accounting for the majority of the binding energy. HotSprint contains data for 35 776 protein interfaces among 49 512 protein interfaces extracted from the multi-chain structures in Protein Data Bank (PDB) as of February 2006. The conse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 33 شماره
صفحات -
تاریخ انتشار 2011